1800 244 735

Helpline (02) 9874 9777

Revisiting vitamin therapy for HD

A research group in Spain is planning a clinical trial to explore if biotin and thiamine supplementation may help treat motor symptoms of Huntington’s Disease. This strategy emerged from their observations that some protein changes in both mice and people with the HD gene mutation resembled those seen in another rare brain disorder, biotin-thiamine responsive basal ganglia disease (BTBGD). Like HD, BTBGD affects a part of the brain called the striatum and causes movement problems. Daily biotin and thiamine vitamin supplementation is an approved treatment for BTBGD, and has been used with success for individuals with this condition. A recent publication provides some evidence that this treatment could be worth a try in HD, too, but a rigorous clinical trial in people with HD would be needed first.

Approaching Huntington’s disease treatment from a new angle

Individuals with Huntington’s Disease (HD) have a mutation in a gene called huntingtin, which creates an expanded, longer-than-normal huntingtin protein. The protein builds up in the brain and is thought to be toxic to brain cells, leading to the symptoms of HD. Research on HD treatment has largely focused on targeting the huntingtin gene and protein itself. Many of these treatments and therapies aim to lower huntingtin protein levels through various methods, and several current clinical trials, both past and present, have been developed with this goal in mind.

However, the field of HD research is diverse, and scientists are exploring other treatment targets from different angles. Recently a group of HD researchers in Spain has investigated the role of a family of proteins called CPEBs in neurodegenerative diseases. The research group’s work was published in Science Translational Medicine in September of 2021 and presented by Dr. Jose Lucas on Day 1 of the CHDI HD Therapeutics conference in March 2022.

The basic job of CPEB proteins in cells is to modify the genetic RNA message molecule in a way that affects the size and the amount of the proteins the RNA message produces. CPEBs affect protein creation by lengthening or shortening a part of the RNA message called the poly-A tail. This tail can be placed in slightly different locations, allowing one gene to make different “recipes” to produce proteins of multiple lengths. When a poly-A tail is very short, this signals that the RNA recipe should be destroyed. Therefore, the actions and amounts of CPEBs can significantly affect the lengths and levels of important protein molecules in cells.

From CPEBs to vitamin deficiency

CPEB proteins are known to play a role in brain development and in adult nerve cells. Changes in the actions and levels of CPEB proteins have been seen while studying autism and epilepsy, but CPEB proteins had not yet been looked at closely in neurodegenerative diseases like HD. In this recent study, Lucas’s team observed changes in CPEB levels in the brains of humans and mice with the HD gene. This led them to look more closely at how that affected the levels of other RNA messages and proteins related to HD and other brain diseases.

One of the genes affected by changes in CPEB levels was a gene identified in biotin-thiamine-responsive basal ganglia disease (BTBGD). This is a very rare genetic disorder (one in a million) that usually strikes in early childhood and hinders the brain’s ability to use dietary thiamine (also known as vitamin B1). Like HD, BTBGD causes damage to a part of the brain called the striatum, which leads to problems with movement, mood, and thinking. But unlike HD, there is a treatment that can do more than manage symptoms. With daily oral administration of biotin and thiamine, complete clinical recovery from BTBGD is typically reported if treatment is started soon after noticing symptoms, and if lifelong treatment is maintained. The clinical similarities between BTBGD and HD and their genetic findings prompted Lucas’s group to explore whether thiamine deficiency could also be occurring in HD, and if vitamin supplementation could be a way to treat it.

Indeed, the researchers found that mice with HD showed BTBGD-like bloodwork, including thiamine deficiency, and human HD brain tissue also showed signs of thiamine deficiency. This led them to move forward with testing a combination of high-dose biotin and thiamine in two types of mice with HD. The treatment prevented deficiency in brain thiamine, improved brain health, and decreased the rate of loss of nerve cells, in comparison to untreated mice. Based on these observations, the researchers think it’s possible that individuals with HD might also benefit from thiamine and biotin vitamin supplementation.

Moving findings in mice into people?

These promising results in mice don’t mean that individuals HD should start taking large quantities of biotin and thiamine from the grocery store. The research done in mouse models was limited to the motor symptoms of HD and did not evaluate the cognitive and psychiatric symptoms of HD. As we’ve learned many times over, animals and cells in a dish can provide valuable insight into HD and a starting point for testing therapies, but the only way to test safety and effectiveness of new treatments is to conduct clinical trials. To date, promising vitamin-based therapies (CoQ10, for example) have not panned out in human trials.

Despite these limitations, a randomized trial based in Spain to use biotin and thiamine to treat people with HD is being designed, with the hope that the combined oral therapy might be able to modify the progression of HD in people with HD in the early-to-middle stages. Clinical testing may be a logical next step, though some researchers and clinicians have questioned why the design of the trial does not include a placebo group for comparison. Nevertheless, vitamin supplementation is easily implementable, and high dose combination treatment of biotin and thiamine has already been proven safe. Furthermore, both vitamins are approved by various regulatory agencies and are available at a low cost. We are encouraged by the knowledge that this type of therapy is evidence to be well-tolerated, safe, and effective for patients with BTBGD and look forward to hearing more news about the upcoming trial in people with HD.

Latest Research Articles

Disappointing news from Novartis about branaplam and the VIBRANT-HD trial

Published date: 9 December, 2022

The pharmaceutical company Novartis has released a community update which announces that they are ending development of branaplam, a huntingtin lowering drug, for possible treatment in Huntington’s disease (HD). This news comes following recent bad news about side effects of branaplam in HD patients, being tested in the VIBRANT-HD clinical trial, dosing of which was ... Read more

Update on the PTC Therapeutics PIVOT-HD Trial

Published date: 2 November, 2022

Recruitment of participants into the US arm of the PTC Therapeutics PIVOT-HD trial has been paused. Since this announcement, there have been a lot of different (and confusing!) headlines about the pause in recruitment. In this article, we will lay out what is going on and what this announcement means. What is the aim of ... Read more

Forward momentum for Roche and Wave in latest news about huntingtin-lowering trials

Published date: 30 September, 2022

In the past week or so, during and following a big HD research conference, two companies developing medicines for Huntington’s disease announced news about their huntingtin-lowering drugs. First, the pharmaceutical company Roche announced plans for a new clinical trial of tominersen. Then, the genetic medicines company Wave Life Sciences shared early data showing that its ... Read more

Focusing in on fibrils; scientists give us a glimpse of huntingtin protein clumps

Published date: 8 September, 2022

A group of scientists from the EPFL in Lausanne, Switzerland have published a paper in the Journal of the American Chemical Society, describing clumps made up of a fragment of the huntingtin protein. A word that’s commonly used to describe these is “aggregates.” Using very powerful microscopes, the team was able to zoom in and ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 4

Published date: 2 September, 2022

DNA repair and CAG repeat instability The effect of HTT lowering on CAG repeat expansions Welcome to last day of the @hdfcures conference! We’ll only be sharing a few talks from today’s sessions, which focus on DNA repair. The first is from HDBuzz’s very own Jeff Carroll! Jeff will be sharing his work on HTT ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 3

Published date: 1 September, 2022

Pre-clinical work moving toward trials New tools to lower HTT showing promise in animal models Welcome back! The first talk we will be tweeting about today is from Anastasia Khvorova, who will be telling us about her teams work on lowering of Huntingtin using technology called RNAi. One of the problems in studying drug delivery ... Read more