1800 244 735

Helpline (02) 9874 9777

Prana Biotech publishes Huntington's disease animal model data for PBT2

The Huntington Study Group and Prana Biotechnology are currently running a clinical trial, Reach2HD, to determine whether the drug PBT2 is effective in HD patients. Now, they’ve released the preclinical data behind the trial, showing the drug is effective in two animal models of HD.

History of PBT2

Many Huntington’s disease families have been excited by word of a new player developing a novel treatment for HD. Prana Biotechnology, a drug development company in Australia, has developed a new drug they call PBT2.

HDBuzz has previously written about Prana and their drug, which works in a surprising and novel way. While all the details are not understood, the drug is designed to interfere with interactions between the huntingtin protein and the metal copper.

Interfering with copper in the body may sound like a strange and surprising way to attack Huntington’s disease, but there is a history of investigating changes in copper in the brain of HD patients.

Another genetic disease called Wilson’s disease is caused by mutations in a gene that helps cells get rid of excess copper. The cells of patients with Wilson’s disease accumulate too much copper because they don’t know how to get rid of it, thanks to their defective gene.

It turns out that Wilson’s disease patients have brain damage in the same areas of the brain as Huntington’s disease patients, and that in HD, these parts of the brain accumulate copper too. This supports the idea that copper might be important for the particular parts of the brain that die in HD.

Based on in-house work that suggested PBT2 was effective in Huntington’s disease, Prana Biotechnology began working with the Huntington Study Group to initiate a trial of their drug in human HD patients. The trial, currently running in the US and Australia, is called Reach2HD.

This trial happened so fast that few people outside the company had seen the data that suggested their drug was effective. They’ve now published this data for everyone to see in the new Journal of Huntington’s Disease.

The animal models

Before testing a drug in humans, scientists like to have an idea of whether it is safe and effective. The only way to study this is to give the drug to animals who have been genetically modified to carry the same mutant HD gene as human patients.

These animals have problems that mimic, in some ways, those experienced by HD patients. While the animals don’t have Huntington’s disease, they do provide an objective way of testing whether a drug has an impact on the problems caused by expression of the mutant HD gene.

To test PBT2, the team of scientists, lead by Stephen Massa of the University of California at San Francisco, turned to two different animal models of HD. First, they used a tiny worm with a big name – ‘Caenorhabditis elegans’. Unlike humans, with their billions and billions of brain cells, C. Elegans has precisely 302 brain cells.

Forcing C. elegans‘ worms to express a gene similar to the one that causes Huntington’s disease in people causes these worms to become paralyzed and unable to move. Because the worms are so small and have a very short lifespan, they can be used to quickly test whether a drug reduces the harm associated with the mutant gene.

The second animal used to investigate the effectiveness of PBT2 was a mouse that has been genetically engineered to express a mutant HD gene. This gene makes them very sick, very fast – they have problems with coordinating their movements, show shrinkage in the brain similar to that seen in HD patients and ultimately die very young. These mice provide a simple tool for testing a Huntington’s disease drug – scientists can simply give the mice a drug and see if it can improve any of their symptoms.

The results

In the worm model, PBT2 was very effective – worms treated with PBT2 were able to live for much longer without becoming paralyzed. Rescuing worms is nice, but it’s a long way from people! The mice, despite being small and having fairly simple behaviors, are much closer to people. How did PBT2 do in HD mice?

While alive, HD mice treated with PBT2 showed some improvements in the coordination of their movements – that is, they were slightly less clumsy. More interestingly, treatment with PBT2 prolonged the survival of HD mice by a significant amount: mice treated with the drug lived about 26% longer than untreated mice. That’s a pretty decent extension, though we should remember that the mice were still quite sick during the extended period of their life.

Other measures were improved by PBT2 treatment as well. Like many HD patients, these HD mice lose weight. Weight loss can be a major problem for HD patients, and is difficult to combat. Treatment with PBT2 helped HD mice maintain body weight in a fairly dramatic fashion.

In the brain, HD mice showed shrinkage similar to that experienced by HD patients. This loss was significantly, but not completely, rescued by treating the mice with PBT2. This suggests the drug isn’t just masking symptoms, but might actually be stopping the brain cell death that causes symptoms to occur.

Caveats and questions

All in all, it’s easy to see why these scientists were excited about the results of PBT2. The beneficial effects in the mice, in particular, are pretty impressive.

As with any trial conducted in animals, it’s worth thinking about the limitations. The mice, for example, were treated with PBT2 from 3 weeks of age – essentially from when they first start eating and drinking on their own, rather than nursing from their mothers. This is not what will happen in people, who are only being given the drug after their symptoms start. Can PBT2 work, even if it’s only given when someone is already sick? We just don’t know yet.

PBT2 has advantages over some other experimental drugs in HD. For one, it is known to get into the brain, where it needs to be to work. Furthermore, it has already been shown to be well tolerated in human Alzheimer’s Disease patients, making it less likely that the drug will fail because of side-effects.

The clinical trial currently investigating PBT2 in HD patients is formally only designed to study whether the drug is safe in HD patients when administered for 26 weeks. But the investigators are also measuring a host of changes in these patients caused by HD, including behavior changes, thinking problems and biological changes in the blood, urine and brain. Looking at these things now may give us a hint of whether PBT2 is effective.

Especially in light of these positive results in animal models, HDBuzz is encouraged to hear that the trial is now fully recruited, and we look forward to hearing the results.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

Treatment for neurological disorder could be repurposed for Huntington’s disease patients

Published date: 22 October, 2020

While developing a drug called branaplam for patients with SMA, the pharmaceutical company Novartis discovered that it could hold promise for people with HD. The FDA has granted a special status called Orphan Drug Designation to branaplam. An existing drug…for huntingtin lowering? The pharmaceutical company Novartis has announced that the U.S. Food and Drug Administration ... Read more Treatment for neurological disorder could be repurposed for Huntington’s disease patients

Updates from the EHDN Plenary Meeting 2020

Published date: 9 October, 2020

In September, the European Huntington’s Disease Network (EHDN) hosted a virtual webinar event which comprised presentations on some of the latest scientific research as well as clinical studies of Huntington’s disease (HD). Researchers, doctors, patients and other interested folks, tuned in for an afternoon of talks as well as question and answer sessions to learn ... Read more Updates from the EHDN Plenary Meeting 2020

Sad news from the SIGNAL study: pepinemab does not influence HD symptoms

Published date: 23 September, 2020

The SIGNAL clinical trial was designed to test a drug called pepinemab in people with early Huntington’s disease. The key results of that trial were recently announced, and unfortunately, pepinemab did not slow or improve HD symptoms as hoped. What was the SIGNAL trial, and who participated? The SIGNAL trial was launched in 2015 by ... Read more Sad news from the SIGNAL study: pepinemab does not influence HD symptoms

When genes are unstable: targeting somatic instability in HD

Published date: 8 September, 2020

What is somatic instability? We tend to think of DNA as a fixed blueprint, an overarching plan for the biological bricks and bridges that constitute our cells, organs, and bodies. But like any good plan, DNA is actually dynamic and adaptable. It gets frequent use as a template for creating the RNA messages that pave ... Read more When genes are unstable: targeting somatic instability in HD

Working as a team: Changes in brain development mean some brain regions may be slacking off

Published date: 17 August, 2020

The effect of the HD genetic expansion on brain development has been a hot topic in HD research. A team of researchers led by Dr. Sandrine Humbert at the Grenoble Institut Neurosciences, examined human fetal tissue to show that the mutant HD gene causes very early changes in the patterns of early brain development. But ... Read more Working as a team: Changes in brain development mean some brain regions may be slacking off

Caution urged for the use of gene-editing technology CRISPR

Published date: 12 August, 2020

A gene-editing tool known as CRISPR has been heralded as a breakthrough technology for scientists in the lab but also as a potential strategy to treat numerous genetic diseases, including Huntington’s. But a series of recent studies has suggested that CRISPR is less precise than previously thought, leading to unintended changes in the genome. Three ... Read more Caution urged for the use of gene-editing technology CRISPR

Welcome to our new website!

Please bear with us while we iron out the last minute wrinkles! If you have any feedback about our new site, please fill out the form below.