1800 244 735

Helpline (02) 9874 9777

Jumping genes: Huntington's disease protein invades brain transplants

Huntington’s disease is caused by the malfunctioning and early death of brain cells. Replacing those dead and dying cells with stem cells has long been a goal of some HD scientists. A new study investigates the long-term health of some of the earliest cell transplants into HD patient brains — and finds a surprising result.

Filling in the gaps in the HD brain

Huntington’s disease, and other ‘neurodegenerative’ diseases like it, happen when specific cells in the brain die. Unfortunately for people carrying the HD mutation, these critical brain cells are mostly only made during our early development. After we’re born, most areas of the brain don’t grow many new brain cells to replace those that are inevitably lost, even during normal aging.

What if we could take tissue from a developing brain and use it to fill in the gaps in a degenerating HD brain? Though there’s a pretty high ‘ick-factor’, it’s technically possible to dissect brain regions from human embryos and transplant them into the degenerating regions of HD patient brains.

Cell replacement therapy

In fact, this ‘cell replacement’ idea has a long history in HD. In the mid-1980’s, a series of animals studies showed that it was possible to fix brain damage caused by toxins, by transplanting embryonic brain cells into the damaged area. Subsequent work, in more sophisticated animal models, supported the idea that this approach might be beneficial.

Based on this animal work, and the progression of similar trials in Parkinson’s disease, a small number of HD patients received grafts of embryonic brain tissue starting more than 15 years ago. Disappointingly, none of the patients receiving transplants showed much, if any, sustained improvement in their HD symptoms after receiving these transplants.

One patient who received a fetal tissue transplant died about 18 months after surgery, due to unrelated causes (heart disease). While sad for the patient and their family, this enabled scientists to study the transplanted tissue and see how it was doing in the brain. One possible explanation for why the patients didn’t get much better is that the transplants may not have survived, or might not have made the right kind of connections in the host brain.

In fact, this early study showed that the fetal tissue did survive in the brain of the HD patient, and the cells in the graft seemed to make the kinds of connections they should have made with other cells in the brain. This is good news, because it means this kind of transplant is technically possible, but bad news, because it means we don’t know why it didn’t make the patient better.

New cells, old problems

After more time had passed, scientists were able to study a larger number of brains from Huntington’s disease patients who had ultimately died of HD, years after receiving grafts of fetal tissue. This analysis pointed to a more disappointing reason for the failure of the grafted tissue to help HD patients: the new cells seemed to be dying, much like the old cells around them.

This was unexpected! Remember, the cells grafted into the brains of HD patients were from human embryos, and so were very young. Nevertheless, something about being inside of an HD brain made these brand new cells sick, and in fact lead them to die like the cells they’re supposed to be replacing.

Similar disappointing results were observed in Parkinson’s disease patients who’d received fetal tissue grafts, suggesting that this might be a general problem with the whole idea of cell replacement therapy. It could be that the brains of patients with neurodegeneration are just too inhospitable for new cells to be of much help.

There goes the neighborhood

But how could this be? If the donor cells don’t have an HD mutation, why do they get sick just like those cells that do? We don’t know the answer to this question yet, but an emerging body of work suggests brain cells in people with neurodegeneration may actually make each other sick.

In many neurodegenerative diseases, brain cells are found to be full of clumped up garbage. These clumps are called ‘aggregates’ in HD, ‘Lewy bodies’ in Parkinson’s and ‘amyloid plaques" in Alzheimer’s disease. In each case, cells in certain areas of the brain seem unable to take out the cellular trash, which might contribute to them getting sick and dying.

When fetal grafts were implanted into the brains of patients with Parkinson’s disease, the cells in the graft were discovered to contain Lewy bodies, just like the sick cells around them. This was very surprising – these are healthy young cells, and it normally takes decades for Parkinson’s disease to develop.

New HD work

Could something similar be happening in Huntington’s disease grafts? A recent study from a group of scientists led by Francesca Cicchetti, Université Laval, suggests something funny might be going on. Cicchetti examined the brains of 3 HD patients who died about 10 years after receiving grafts of fetal tissue.

To understand their findings, we have to remember a few things about how HD works. Every HD patient has inherited a mutant copy of the HD gene, which causes their cells to make a mutant HD protein. It’s this mutant HD protein that causes damage in the HD brain. In fact, most of those clumps of garbage found in HD brain cells (the 'aggregates’) are made of the mutant HD protein.

Cicchetti’s team noticed something strange about the grafted fetal tissue in HD patient brains ― it contained aggregates! That’s very surprising, because this grafted tissue doesn’t have a mutant HD gene, and so shouldn’t have any mutant HD protein in it. What’s going on?

To be clear: the clumps of mutant HD protein aren’t inside the cells of the graft, but rather stuck outside the cells like litter that shouldn’t be there. The explanation for this surprising result isn’t clear, but figuring out where these clumps come from and whether they contribute to the failure of these grafts is going to be an important area of work. But at least now we know that they’re there.

So, now what?

The results of this study, as well as the other studies in other neurodegenerative diseases, suggest that we need to be very cautious about simply replacing dead cells in the degenerating brain. If the underlying sickness is still present, the new cells we put in the brain may simply become ill as well.

This is somewhat disappointing news, in terms of accomplishing cell replacement therapy for HD. But great strides are being made in stem cell science in labs around the world, so this story is not the end of this particularly road. Finally, though cell replacement is an attractive idea, work to boost the survival of brain cells, rather than replacing them when they die, is rapidly developing and continues full speed.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

Treatment for neurological disorder could be repurposed for Huntington’s disease patients

Published date: 22 October, 2020

While developing a drug called branaplam for patients with SMA, the pharmaceutical company Novartis discovered that it could hold promise for people with HD. The FDA has granted a special status called Orphan Drug Designation to branaplam. An existing drug…for huntingtin lowering? The pharmaceutical company Novartis has announced that the U.S. Food and Drug Administration ... Read more Treatment for neurological disorder could be repurposed for Huntington’s disease patients

Updates from the EHDN Plenary Meeting 2020

Published date: 9 October, 2020

In September, the European Huntington’s Disease Network (EHDN) hosted a virtual webinar event which comprised presentations on some of the latest scientific research as well as clinical studies of Huntington’s disease (HD). Researchers, doctors, patients and other interested folks, tuned in for an afternoon of talks as well as question and answer sessions to learn ... Read more Updates from the EHDN Plenary Meeting 2020

Sad news from the SIGNAL study: pepinemab does not influence HD symptoms

Published date: 23 September, 2020

The SIGNAL clinical trial was designed to test a drug called pepinemab in people with early Huntington’s disease. The key results of that trial were recently announced, and unfortunately, pepinemab did not slow or improve HD symptoms as hoped. What was the SIGNAL trial, and who participated? The SIGNAL trial was launched in 2015 by ... Read more Sad news from the SIGNAL study: pepinemab does not influence HD symptoms

When genes are unstable: targeting somatic instability in HD

Published date: 8 September, 2020

What is somatic instability? We tend to think of DNA as a fixed blueprint, an overarching plan for the biological bricks and bridges that constitute our cells, organs, and bodies. But like any good plan, DNA is actually dynamic and adaptable. It gets frequent use as a template for creating the RNA messages that pave ... Read more When genes are unstable: targeting somatic instability in HD

Working as a team: Changes in brain development mean some brain regions may be slacking off

Published date: 17 August, 2020

The effect of the HD genetic expansion on brain development has been a hot topic in HD research. A team of researchers led by Dr. Sandrine Humbert at the Grenoble Institut Neurosciences, examined human fetal tissue to show that the mutant HD gene causes very early changes in the patterns of early brain development. But ... Read more Working as a team: Changes in brain development mean some brain regions may be slacking off

Caution urged for the use of gene-editing technology CRISPR

Published date: 12 August, 2020

A gene-editing tool known as CRISPR has been heralded as a breakthrough technology for scientists in the lab but also as a potential strategy to treat numerous genetic diseases, including Huntington’s. But a series of recent studies has suggested that CRISPR is less precise than previously thought, leading to unintended changes in the genome. Three ... Read more Caution urged for the use of gene-editing technology CRISPR

Welcome to our new website!

Please bear with us while we iron out the last minute wrinkles! If you have any feedback about our new site, please fill out the form below.