1800 244 735

Helpline (02) 9874 9777

Does blood hold the key to testing treatments earlier in HD patients?

Researchers at Johns Hopkins led by Wenzhen Duan have developed a non-invasive way to track progression of Huntington’s disease (HD) which could be used before patients even start showing symptoms. Using a type of brain scan called an MRI, the researchers have shown that in mouse models of HD they can accurately measure the amount of blood in the brain. It is proposed that this could be used as a biomarker of HD advancement which could be used even before traditionally measured symptoms develop. Biomarkers are lab tests that we can do to predict the course of disease in a living patient, and they may be the key to identifying effective HD drugs.

Why do we need different biomarkers for HD?

Despite recent disappointments in ASO clinical trial outcomes, the HD research community has by no means given up hope for developing a drug which would switch off the mutated Huntington’s disease gene or slow the disease by another means. In many cases, clinical trials run to date test drugs in “manifest” patients who have clear symptoms of HD which can be monitored throughout the trial to determine if the drug under investigation is working or not.

But perhaps we need to be testing these drugs at an earlier stage of disease to stop HD in its tracks? The problem with opting to test a new drug early before patients have symptoms is working out what we could measure to see if the drug is working. This is where biomarkers come in. If we could find a biomarker which could be measured in patients without obvious symptoms, this could be very helpful for doctors to track and monitor patients and hopefully, in the future, see if medicines are helping slow down their disease progression even at very early stages.

Is blood volume a good biomarker?

Good blood flow is very important for healthy brains as it delivers oxygen and other nutrients to brain cells to keep them well-nourished and working properly. Without good blood flow or a good supply of oxygen and nutrients, brain cells can get sick and die. Surprisingly, in people with HD, the volume of blood in the brain is significantly lower compared to people with healthy brains.

In this study, Duan’s team used a type of MRI brain scan which allows them to calculate the precise volume of blood in the brains of HD mice which are engineered to have a similar mutation to people with HD. The volume of blood measured in this scan is altered over the lifetime of the HD mouse. Even when the mice were very young and had yet to show signs of HD symptoms, the blood volumes were already lower than normal. The researchers suggest that careful tracking of blood brain volumes could be useful as an early biomarker of the progression of HD.

Can blood volume measurements indicate if HD drugs are working?

The group of researchers also investigated if using CRISPR to edit the HD mutation improved signs of HD in the mouse model. CRISPR is a gene-editing technology which allows scientists to precisely alter a region of DNA sequence. In this case, CRISPR was used to silence both copies of the Huntingtin gene – both normal and disease-forms – to switch off the expression of both. This is a similar approach to huntingtin-lowering therapies currently in clinical trials being led by Novartis, uniQure and others.

Using the MRI scanning technique and other brain function tests, the researchers compared regular HD mice with those which had been treated with the CRISPR therapy. As they had expected the CRISPR therapy delayed onset of symptoms in HD mice.

Importantly however, CRISPR treated mice had their altered brain blood volumes restored even when the mice were at an age when symptoms could not yet be measured. This shows that, with this treatment, using blood brain volume as a biomarker of disease can show if early treatments are working or not.

This looks good for mice but what about in people with HD?

Whilst the alteration to blood brain volume in HD mice mimics what we know happens in the brains of people with HD, it is important to remember all of these experiments were completed in mice, not people which obviously have different brain structures. There is still a way to go yet before we can be sure that this same measure of brain blood volume will be a good biomarker in people with HD. To do this we need to validate these findings in clinical trials with people. A benefit of this new blood volume approach is that the MRI is a non-invasive procedure, so looking at this measurement would hopefully be less taxing for patients compared to spinal tap or other invasive measures currently in use.

However, this is a hopeful step forward in HD drug discovery. Scientists now have a new measure they can use in the lab to study changes in HD models before they show symptoms and to test different drugs in these models. The hope is that early intervention with good drugs in people with an HD diagnosis might delay or even stop the progression of Huntington’s disease altogether. We look forward to reading more about this work!

Latest Research Articles

Focusing in on fibrils; scientists give us a glimpse of huntingtin protein clumps

Published date: 8 September, 2022

A group of scientists from the EPFL in Lausanne, Switzerland have published a paper in the Journal of the American Chemical Society, describing clumps made up of a fragment of the huntingtin protein. A word that’s commonly used to describe these is “aggregates.” Using very powerful microscopes, the team was able to zoom in and ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 4

Published date: 2 September, 2022

DNA repair and CAG repeat instability The effect of HTT lowering on CAG repeat expansions Welcome to last day of the @hdfcures conference! We’ll only be sharing a few talks from today’s sessions, which focus on DNA repair. The first is from HDBuzz’s very own Jeff Carroll! Jeff will be sharing his work on HTT ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 3

Published date: 1 September, 2022

Pre-clinical work moving toward trials New tools to lower HTT showing promise in animal models Welcome back! The first talk we will be tweeting about today is from Anastasia Khvorova, who will be telling us about her teams work on lowering of Huntingtin using technology called RNAi. One of the problems in studying drug delivery ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 2

Published date: 31 August, 2022

We’re back for day 2 at @hdfcures! This morning’s talks will be focused on clinical trial planning and therapeutic updates from clinical studies. The sheer number of talks related to human trials compared to previous years is so encouraging! Updating metrics for clinical trials A better system for disease categorization The first talk of this ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 1

Published date: 31 August, 2022

Hello and welcome from the HDBuzz team who are currently at the Hereditary Disease Foundation (@hdfcures) 2022 Milton Wexler Biennial Symposium in Boston! It’s the dawn of an exciting new era for HDBuzz. Due to our new partnership with @hdfcures, we are now able to live tweet many of the talks from this meeting which ... Read more

Serious side effects reported for some people treated with the huntingtin-lowering drug AMT-130, currently in clinical trials

Published date: 29 August, 2022

Last month, we relayed positive news from uniQure’s trial testing AMT-130, a gene therapy delivered via brain surgery to lower huntingtin (HTT). Data released by uniQure in June suggested AMT-130 was safe and well tolerated in the small group of people that were treated with a low dose of the drug. Now we’re back to ... Read more