1800 244 735

Helpline (02) 9874 9777

Uncovering the dark side of DNA repair to design HD treatments

A gene known as ‘MSH3’, which encodes a protein involved in fixing and maintaining our DNA, has become a hot topic in Huntington’s research since being implicated as a key driver of the disease by multiple genetic studies. In a recent publication, a team of scientists from the National University of Ireland, Galway, have provided insights as to how the MSH3 protein is controlled within our cells, which could help to inform the design of drugs aimed at slowing or even preventing HD.

MSH3 – the double-edged sword

The MSH3 protein molecule works by correcting genetic mistakes and protecting our genomes against the continuous onslaught of DNA damage that they face on a day-to-day basis. It does this by scanning along our DNA, looking for errors and recruiting other proteins to help fix them in a process called ‘mismatch repair’.

As you may know, Huntington’s disease is caused by an unusually long stretch of repeating ‘C’-‘A’-‘G’ DNA bases (the building blocks of the genetic code) within a gene called “huntingtin”. In the brain areas affected by HD, this stretch of repetitive DNA is ‘unstable’ – meaning that more repeat units might be added throughout life. We call this process ‘DNA repeat expansion,’ or somatic instability. For most repeat expansion diseases like HD, the longer the stretch becomes, the worse the disease symptoms get.

When MSH3 comes across this CAG repeat in our DNA, it recognises it as an error and tries to fix it, but instead introduces even more repeats – making matters even worse!

So how can we prevent this?

If we could make a drug that stops MSH3 from making this mistake, we could slow or prevent the repeat expansion process, which in turn we hope could slow down the disease – or even stop it dead in its tracks… nBut how can we do this without disturbing MSH3’s normal function of protecting our genetic code? Normally, when DNA repair genes are missing, all sorts of problems can arise through the accumulation of DNA damage – like cancer, for example. nWhat’s really exciting about MSH3 is that, unlike other DNA repair proteins that are known to be involved in the repeat expansion process, completely getting rid of MSH3 does not seem to have many negative side effects. It has a great cover system arranged for when it’s not there – making it an ideal druggable target.

So what’s new?

Our cells can make the MSH3 protein work slower by adding a chemical signature called an acetyl group, and can make it work faster by removing the acetyl group. Since MSH3 working faster would mean more rapid DNA repeat expansion, scientists want to prevent the erasure of this acetyl mark. Previous studies suggest a protein called HDAC3 is involved in the removal process. The Laheu lab at the National University of Ireland, Galway, tested a drug in human cells that stops HDAC3 from working properly, and looked at its effect on DNA repeat expansion.

What did they find?

They found that the drug halted CAG repeat expansions in human cells, and, most importantly, they found it did not affect other important DNA repair activities, suggesting this therapy would not come at the cost of increased cancer risk. nThe researchers also used this drug to understand more about how HDAC3 controls MSH3 activity. Protein molecules have special signals called ‘Nuclear Localisation Sequences’ (or ‘NLS’ for short), which act like a postal code that directs proteins to the nucleus where our DNA is kept. They realised that the acetyl mark alters MSH3’s postal code, directing it out of the nucleus where it can no longer drive DNA repeat expansions.

So what does this all mean?

Overall, their study suggests a new regulatory mechanism for DNA repeat expansions through removal of acetyl groups from MSH3 by HDAC3. This may provide an explanation for why patients with certain versions of MSH3 have slower disease progression, if, for example, their acetyl group is more difficult to remove.

Understanding disease mechanisms in this way opens doors for the design of drugs aimed at slowing down the DNA expansion process (and in turn, the disease itself) – particularly since they claim HDAC3 inhibition does not affect the core function of DNA mismatch repair. The drug they used in this study is powerful, selective and fairly well studied, so may already be a promising clinical candidate in itself.

That said, messing with HDAC’s can have all sorts of other unwanted effects in cells. We would need to make sure drugs targeting HDAC3 are safe with limited side-effects. What’s more, we would need to come up with a way of delivering the HDAC3 inhibitor to the deep regions of the brain that are affected in Huntington’s disease, which tends to be pretty difficult.

In summary, their work shows promise, but much more work needs to be done before we can get excited about this as a potential therapy.

Latest Research Articles

Roche Phase II GENERATION HD2 study underway

Published date: 14 February, 2023

Roche released a community letter last month, detailing how their Phase II clinical trial to study the huntingtin-lowering drug, tominersen, is now underway. Learn more about what this means in this article and at the recent HDSA Research Webinar, with representatives from the company. The ups and downs of huntingtin-lowering Tominersen is a type of ... Read more

Disappointing news from Novartis about branaplam and the VIBRANT-HD trial

Published date: 9 December, 2022

The pharmaceutical company Novartis has released a community update which announces that they are ending development of branaplam, a huntingtin lowering drug, for possible treatment in Huntington’s disease (HD). This news comes following recent bad news about side effects of branaplam in HD patients, being tested in the VIBRANT-HD clinical trial, dosing of which was ... Read more

Update on the PTC Therapeutics PIVOT-HD Trial

Published date: 2 November, 2022

Recruitment of participants into the US arm of the PTC Therapeutics PIVOT-HD trial has been paused. Since this announcement, there have been a lot of different (and confusing!) headlines about the pause in recruitment. In this article, we will lay out what is going on and what this announcement means. What is the aim of ... Read more

Forward momentum for Roche and Wave in latest news about huntingtin-lowering trials

Published date: 30 September, 2022

In the past week or so, during and following a big HD research conference, two companies developing medicines for Huntington’s disease announced news about their huntingtin-lowering drugs. First, the pharmaceutical company Roche announced plans for a new clinical trial of tominersen. Then, the genetic medicines company Wave Life Sciences shared early data showing that its ... Read more

Focusing in on fibrils; scientists give us a glimpse of huntingtin protein clumps

Published date: 8 September, 2022

A group of scientists from the EPFL in Lausanne, Switzerland have published a paper in the Journal of the American Chemical Society, describing clumps made up of a fragment of the huntingtin protein. A word that’s commonly used to describe these is “aggregates.” Using very powerful microscopes, the team was able to zoom in and ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 4

Published date: 2 September, 2022

DNA repair and CAG repeat instability The effect of HTT lowering on CAG repeat expansions Welcome to last day of the @hdfcures conference! We’ll only be sharing a few talks from today’s sessions, which focus on DNA repair. The first is from HDBuzz’s very own Jeff Carroll! Jeff will be sharing his work on HTT ... Read more