1800 244 735

Helpline (02) 9874 9777

New tool to measure outcomes in Huntington’s Disease clinical trials

When patients participate in clinical trials, there needs to be some type of readout to determine whether the new treatment worked. It’s important to know two key things: What to measure and how to measure it. In the case of HD, these obstacles have vexed scientists and doctors for years. The latest research comes up with a clever new approach to overcome both challenges in a new way. These results could offer a valuable tool to study new HD therapeutics entering clinical trials.

What to measure and how to measure it: It seems straightforward. And sometimes, it is. For example, to test a new cholesterol-lowering medicine, doctors draw patients’ blood after treatment, measure cholesterol, and compare it to pre-treatment levels. In this case, the what is obvious (cholesterol), and the how is simple because cholesterol is a large, fat-like substance that can easily be separated from blood and measured.

But, in the case of HD clinical trials, what and how are much more complicated.

The “What”

HD is caused by a genetic mutation that changes the makeup of the Huntingtin protein, which makes the protein toxic. This mutant Huntingtin protein going rogue in neurons causes every case of HD. Mutant Huntingtin interferes with many vital neuronal functions, including transport of cellular cargo, gene regulation, and energy production.

Mutant Huntingtin normally lives inside of cells, including brain cells. But measuring mutant Huntingtin inside of the brain requires a brain biopsy—less than ideal, if you can avoid it. So, the hunt has been on to find less invasive ways of quantifying this tricky protein.

Remember I just told you that Huntingtin is normally found inside of brain cells? Well, that’s not always the case. Sometimes, mutant Huntingtin is released—possibly a result of neurons dying. When a brain cell dies, the membranes break down, allowing the contents to spill out. This means a lot of mutant Huntingtin that was once contained in the cell is now free. The brain quickly cleans up the mess left by the dying cell—but before being broken down, some of the contents travel through the fluid that bathes the brain, called cerebrospinal fluid.

The cerebrospinal fluid circulates throughout the brain and spinal cord. Doctors can insert a thin needle into the space below the spinal cord and withdraw small amounts of cerebral spinal fluid. By analyzing the fluid, doctors catch a small glimpse of what’s happening inside the brain without a brain biopsy.

A new study from Drs Amber Southwell, Michael Hayden and colleagues asks, “Could we measure mutant Huntingtin levels in cerebral spinal fluid and use them to tell us about levels of mutant Huntingtin in the brain?” And the answer is yes!

Researchers have three pieces of evidence supporting this exciting new discovery.

They began by measuring mutant Huntingtin protein in the cerebral spinal fluid of HD mutation carriers. They drew samples from mutation carriers at various stages of the disease: advanced, early-mid, and before symptoms appeared. The researchers wanted to see if levels of mutant Huntingtin increase in cerebral spinal fluid as the disease progressed.

As they predicted, cerebral spinal fluid levels of mutant Huntingtin were highest in the people who were in more advanced stages of the disease, and lower in early disease stages. Why this is so is not clear – it may be that because more brain cells are dying in the course of HD, more mutant Huntingtin protein is released, but more studies will be needed to see if this is the case.

While that correlation was promising, researchers wanted to take things a step further to confirm that dying brain cells were really the source of cerebral spinal fluid mutant Huntingtin. So, they turned to mice.

Researchers poisoned a small area of brain cells. When the cells began to die, they observed a sharp spike in mutant Huntingtin levels in the cerebral spinal fluid. This could be because of the dying cells spilling their contents into the brain, and some of those contents, including mutant Huntingtin, traveling into the CSF.

Huntingtin Silencing Tools

One of the most useful applications of measuring cerebral spinal fluid mutant Huntingtin would be testing new HD therapeutics. A promising avenue of research is to directly reduce the levels of mutant Huntingtin protein. For example, a new type of HD therapeutic approach called gene silencing aims to slow or stop disease progression by reducing levels of mutant Huntingtin. (Click here for an HDBuzz article about gene silencing: http://en.hdbuzz.net/023).

As a proof of concept, researchers treated HD model mice with gene silencing drugs that are known to reduce mutant Huntingtin levels in the brain. When they drew samples from the gene-silenced animals, they found levels of mutant Huntingtin in the cerebal spinal fluid had also been reduced! This suggests that measuring mutant Huntingtin in cerebral spinal fluid may be a good readout to measure whether gene silencing drugs in HD clinical trials are working.

The “How”

The idea of measuring mutant Huntingtin in cerebral spinal fluid has been around for a while, but it poses a huge technical challenge. As explained in this HDBuzz article (http://en.hdbuzz.net/197), mutant Huntingtin is just one of many proteins in cerebral spinal fluid. Isolating and measuring it is like finding a needle in a haystack.

But the other important discovery from this paper is a new, ultra-sensitive method of measuring mutant Huntingtin in cerebral spinal fluid.

The technique uses a pair of proteins called antibodies that specifically recognize and attach themselves to mutant Huntingtin and not other cerebral spinal fluid proteins. In fact, the antibodies are so specific that they only recognize toxic mutant Huntingtin, and not the normal, healthy Huntingtin, which is also produced in HD patients. Importantly, it can identify mutant Huntingtin floating through the cerebral spinal fluid on its own or bound to other proteins in multi-protein clumps, which is usually where it’s hanging out.

One of the antibodies in the pair is attached to an extremely tiny bead, and the other is attached to a glowing tag. The antibodies grab onto mutant Huntingtin. Then, the beads are collected, dragging mutant Huntingtin along with them. Finally, the beads plus mutant Huntingtin are fed through a special machine that can detect the light emitted from the tag, allowing the amount of mutant Huntingtin to be quantified. (More glowing = more antibody = more mutant Huntingtin.) This combination of highly specific antibodies and careful measurement of glowing light gave clinicians and researchers another reliable tool to measure mutant Huntingtin in cerebral spinal fluid.

This new technique complements another one recently described using similar methods, which found similar results (http://en.hdbuzz.net/197). Excitingly, this new study gives the first evidence that the mutant Huntingtin protein measured in the CSF originates in the brain, probably from dying cells. Most importantly, treatment of brains with drugs that reduce mHTT levels leads to quick changes in CSF levels.

This means that, whichever of these new techniques are used to measure HTT, researchers planning human gene silencing trials have a powerful new tool to see how well these drugs are working. We’re pretty excited about these trials, the first of which is just starting now, and this technique is a powerful new addition to testing these drugs in HD patients.

Latest Research Articles

Tipping the balance; new insights into HD genetic modifiers

Published date: 1 September, 2023

Genetic modifiers can influence when HD symptoms begin. Some of these genes encode for different types of molecular machines whose normal job is to repair our DNA when it is broken or damaged. A recently published study from scientists at Thomas Jefferson University uncovers details of how these molecular machines help repair damaged DNA structures ... Read more

Drug to treat movement symptoms of HD approved by FDA

Published date: 22 August, 2023

The vast majority of people with Huntington’s disease experience movement symptoms known as chorea. Valbenazine, also known as INGREZZA, has recently been approved by the United States Food and Drug Administration (FDA), allowing doctors in the USA to prescribe this medicine for Huntington’s disease (HD) chorea. In this article we go through the key points ... Read more

Youthful competitors: young brain cells oust the old

Published date: 8 August, 2023

When you lose something, an easy solution can be to just replace it. But what if the something you’ve lost are cells in the brain? Can they simply be replaced? Some researchers have been working toward this for Huntington’s disease (HD) by injecting new cells into the brains of animal models. A recent publication that ... Read more

Updates from PTC Therapeutics and uniQure on their huntingtin-lowering trials

Published date: 21 June, 2023

On 21st June, both PTC Therapeutics and uniQure shared data from their respective clinical trials, both testing huntingtin-lowering as an approach to treat HD, but with different types of therapies. In this article we go through the data they each presented, what it all means and the next steps the companies will be taking. Treating ... Read more

Huntington’s disease therapeutics conference 2023 – Day 3

Published date: 22 May, 2023

Welcome to the third and final day of HD science, live from Dubrovnik, Croatia! Our Twitter updates are compiled below. Continue to follow live updates for the final day of the conference with the hashtag #HDTC2023.nCheck out our coverage of Day 1 here: https://en.hdbuzz.net/343 and day 2 here: https://en.hdbuzz.net/344. Biomarkers This morning’s session will focus ... Read more

Start here!

Published date: 22 May, 2023

Welcome to HDBuzz! This special page is for people who are new to Huntington’s disease, or new to the world of HD research. Reading the articles linked here will help you pick up the basics of what Huntington’s disease is, and get up to speed with some of the most promising things scientists are doing ... Read more