1800 244 735

Measuring harmful huntingtin protein in the brain’s bath water

Exciting technologies such as gene silencing are being developed for the treatment of Huntington’s disease. Aside from waiting for disease progression to take place, how will we know whether they are working? This has been a major hurdle for HD researchers, but we now have a super-sensitive method to measure the build-up of harmful huntingtin protein in the nervous systems of HD patients.

Needle in a haystack

Cells harbouring a mutation in a gene, like in Huntington’s disease, in most instances go on to produce a protein with the mutation. The DNA contains the script for the mutation but it is the abnormal protein that does the ensuing damage. In the HD research community, efforts are under way to silence the HD gene with the goal of reducing levels of the so-called ‘mutant huntingtin protein’. The litmus test of the success of these approaches involves measuring how well they can reduce levels of the mutant huntingtin protein.

HD researcher Dr. Andreas Weiss, now at Evotec in Hamburg, Germany, has developed a number of very sensitive methods to accurately measure levels of the huntingtin protein. In a recent study published in the Journal of Clinical Investigation, Dr. Edward Wild* of UCL Institute of Neurology, Dr. Weiss, and their team of international colleagues reported that they’ve fine-tuned a method to detect single huntingtin protein molecules – in effect finding the proverbial needle in the haystack. They’ve also figured out exactly which haystack to search.

Testing the waters

Huntington’s disease is a disease of the brain cells, so ideally one wants to measure mutant huntingtin protein levels in the brain. This is rather difficult in live humans, unless one takes a piece of the brain… something that may not be advisable. Hence, the research team turned to the fluid that bathes the brain, called cerebrospinal fluid or CSF. CSF contains a host of proteins that come from brain cells, so the team used their new method to scan it for mutant huntingtin.

As expected, in healthy controls they detected no mutant huntingtin. However, in people carrying the HD mutation, not only did they detect mutant huntingtin, but there was more of the harmful protein in patients who had already developed signs of HD than in those who were well. In fact, the researchers report that levels of mutant huntingtin increased with disease burden, and actually predicted the severity of motor and cognitive problems.

As a sort of bench mark, the team looked at the levels of two other proteins that attest to the integrity of brain cells, called ‘neurofilament’ and ‘tau’. These brain integrity reporters behaved proportionally to mutant huntingtin suggesting that the spill-over of mutant huntingtin into the CSF results from increasing damage to brain cells. “We think the mutant huntingtin is being released into the CSF from the very brain cells it is killing,” said Dr. Wild in a UCL press release. “It may be a smoking gun that reflects the harm the protein is doing in the living human nervous system.”

Onward and upward

Measuring mutant huntingtin reliably in CSF is an important step closer to what really matters in HD: the mutant protein in brain cells. Not only will this technology be important for testing up-and-coming HD-lowering drugs, it may provide a useful clinical tool for predicting and monitoring the progression of HD.

At this point, however, the results by Wild and colleagues need to be reproduced in larger numbers of CSF samples. We also need a better understanding of exactly what CSF mutant huntingtin levels can tell us about what is going on within HD brain cells. Add to this the question of how stable these measurements are in the same person over time, and how they change in response to a drug that lowers mutant huntingtin, and researchers like Dr. Wild and Dr. Weiss have their work cut out for some time to come. You can be sure they’re working hard.

Latest Research Articles

Hats off to brain donors on Brain Donation Awareness Day

Published date: 7 May, 2024

If you’re a frequent reader of HDBuzz, you may have noticed that our articles increasingly thank Huntington’s disease (HD) families for their generous and selfless brain donations. That’s because more and more research is making use of human brains, leading to a better understanding of HD in people. All of that is only possible because ... Read more

A sprinkling of good news for the treatment of HD chorea

Published date: 3 May, 2024

We wrote in August of 2023 about the US approval of a new drug to treat chorea, the movement symptoms of HD. That drug, valbenazine, commercially known as INGREZZA, has just been approved in a new format, one that can be added to soft foods. This news deserves a brief HDBuzz mention. Chorea control Valbenazine ... Read more

A new era for HDBuzz

Published date: 1 May, 2024

HDBuzz strives to be an honest and neutral source of information that Huntington’s disease (HD) families can turn to for trusted, unbiased reporting on research and clinical trial news. We’re honored to have become a global resource for the HD community over the years (14!) and we look forward to building upon the original mission ... Read more

How many is too many? Exploring the toxic CAG threshold in the Huntington’s disease brain

Published date: 21 April, 2024

Drug hunters have been particularly interested in the repeating C-A-G letters of genetic code that lead to Huntington’s disease (HD). The number of CAG repeats gets bigger in vulnerable brain cells over time and may hold the key for slowing or stopping HD. Many scientists have been asking what happens to HD symptoms if we ... Read more

Cry your eyes out: detecting huntingtin in tears

Published date: 10 April, 2024

A recently published collaboration between academic researchers and pharmaceutical companies was successful at detecting huntingtin in tears. The scientists were looking for a new, easy way to track Huntington’s disease (HD). If you don’t mind shedding a tear or two, they found it! Biomarkers – biological metrics in tune with disease progression Tracking disease progression ... Read more

The director’s cut: how CAG repeats change the editing of genetic messages

Published date: 26 March, 2024

Long repetitive sequences of C-A-G letters in the DNA code are associated with at least 12 genetic diseases, including Huntington’s disease (HD). A group of scientists in Massachusetts, USA, have recently developed a new genetic strategy to study how CAG repeats can lead to harmful proteins being made in cells, causing cells to become unhealthy. ... Read more