1800 244 735

Helpline (02) 9874 9777

Huntington's disease therapeutics conference 2018 – day 2

Updates from day 2 of the Huntington’s Disease Therapeutics Conference focusing on DNA repair in HD.

Wednesday morning – DNA repair in HD

Good morning from the 2018 HD Therapeutics Conference! Today’s update is relatively brief because the afternoon was focused on poster presentations. The morning session focused on the role of DNA repair in HD – a hot topic these days, thanks to very interesting genetic studies of HD patients. These huge studies demonstrated that genetic variations, outside the HD gene, contribute to how soon HD symptoms occur in people carrying them. Surprisingly, many of these variations were in genes that help cells repair DNA.

Up first, Jong-Min Lee, Massachusetts General Hospital, updates the crowd on the latest results from the GeM-HD consortium – the international group of researchers searching genetic variations that influence HD onset. The GeM-HD consortium uses microchips that read tiny genetic variations across the entire genome of thousands of HD patients. This huge dataset lets them ask the question – are any of these variations influencing how early or late HD occurs? The latest version of the GeM-HD analysis includes 9,000 HD patients! This increase in sample size has enabled them to identify even more variations that modulate HD onset. These variations are strikingly close to even more DNA repair genes. Lee describes a very subtle variation in the sequence of the HD gene itself that also influences the age of HD symptom onset. The most dramatic effect GeM-HD has observed concern a gene called FAN1. Some variations in this gene have a beneficial effect on HD onset, and other variations have a bad effect. This suggests something FAN1 is doing is central to HD progression. Lee provides another stream of evidence which suggests that people who have more Fan1 in their brains have a later onset of HD. This shows the power of doing genetic studies – if we can find a way to bolster the activity of Fan1, it seems likely that it would be beneficial for HD progression.

Guo-Min Li, University of Texas Southwestern, studies a process called “mismatch repair”, one of the ways by which cells repair certain kinds of DNA damage. Mismatch repair allows cells to fix small errors that crop up when cells copy their DNA. Mutations in these genes lead to high rates of cancer, because genetic errors are left un-corrected. Li reminds the audience that while mismatch repair is normally very helpful for cells to remain healthy, it sometimes makes mistakes. One of these is the tendency for long repetitive stretches of DNA to lengthen. The mutation that causes every case of HD – a stretch of the DNA letters “C-A-G” – is one of these repetitive bits of DNA. Li’s lab is studying the process by which mismatch repair of long stretches of CAG makes them longer. Li’s lab has identified a few specific mismatch repair processes that drive CAG expansions – he suggests they may be a good target for new HD treatments.

Lorena Beese, Duke, also studies mismatch repair. Her lab focuses on the precise ways in which the mismatch repair proteins carry out their work – recognizing mistakes, cutting them out and then stitching the DNA back together. The machines that Beese’s lab has described in detail may be future targets for drugs designed to change how they interact with long CAG tracts, like the one in the HD gene.

Peter McKinnon, St. Jude Children’s Research Hospital, is an expert on DNA repair in the brain. He’s addressing the conference on the specific types of DNA damage that occur in the brain. The brain is interesting, from the point of view of DNA repair, because for most of our lives the neurons in our brain don’t divide. This means they can’t use some of the arms of the DNA repair pathways, which only work in dividing cells. McKinnon’s lab studies a specific kind of DNA damage called “base excision repair”, a process for fixing damage to only one of the two strands of DNA.

Partha Sarkar from University of Texas studies the Huntingtin protein and its direct interactions with DNA and DNA-handling proteins. Turns out mutant huntingtin hangs around with a protein called PNKP whose job is to look after DNA. In doing so, it prevents it doing its job. This raises the possibility that the HD mutation accelerates DNA damage.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

Scientists identify precisely how pridopidine works in models of Huntington’s disease

Published date: 12 June, 2021

Pridopidine is a drug developed to treat Huntington’s disease (HD) and now scientists have a clearer understanding of how it works in the body and brain. In a series of academic papers, researchers figured out that pridopidine is working by targeting a particular receptor protein called S1R. With this new understanding, the researchers believe pridopidine ... Read more

Huntington's disease therapeutics conference 2021 – Day 3

Published date: 29 April, 2021

We are back for the last day of the virtual 2021 CHDI Therapeutics conference. This article summarises our live Twitter updates on the exciting science being presented, which you can find with the hashtag #HDTC2021. The final session of the conference will provide the latest news on more Huntington’s disease clinical programs. A new way ... Read more

Huntington's disease therapeutics conference 2021 – Day 2

Published date: 28 April, 2021

We are back with Day 2 of the virtual 2021 CHDI Therapeutics conference. This article summarises our live Twitter updates on the exciting science being presented, which you can continue to follow with the hashtag #HDTC2021. The morning session focussed on promising HD therapeutics that are in preclinical development and the afternoon session covered different ... Read more

Huntington’s disease therapeutics conference 2021 – Day 1

Published date: 28 April, 2021

The CHDI Therapeutics Conference 2021 kicked off today. This article summarizes our live Twitter updates on the exciting science being presented, which you can continue to follow with the hashtag #HDTC2021. The morning of Day 1 focused on clinical trial updates, while the afternoon explored genetic modifiers of HD and how they might be harnessed ... Read more

Huntington’s disease clinical trial round up

Published date: 26 April, 2021

It seems like the HD community has been inundated with updates from different companies and clinical trials recently. The news is far from complete doom and gloom; although there have been some real disappointments from some of the frontrunner trials, there are also positive updates from many different companies and lots of reasons for us ... Read more

Good news from uniQure: gene therapy trial on track, and promising data in animals

Published date: 15 April, 2021

Two recent press releases from uniQure provide welcome good news: the first ever HD gene therapy, known as AMT-130, has been administered via brain surgery to a small set of participants in an early safety trial. At the same time, uniQure has published findings in HD animal models that increase confidence in the drug’s ability ... Read more