1800 244 735

Helpline (02) 9874 9777

Huntington's disease therapeutics conference 2018 – day 2

Updates from day 2 of the Huntington’s Disease Therapeutics Conference focusing on DNA repair in HD.

Wednesday morning – DNA repair in HD

Good morning from the 2018 HD Therapeutics Conference! Today’s update is relatively brief because the afternoon was focused on poster presentations. The morning session focused on the role of DNA repair in HD – a hot topic these days, thanks to very interesting genetic studies of HD patients. These huge studies demonstrated that genetic variations, outside the HD gene, contribute to how soon HD symptoms occur in people carrying them. Surprisingly, many of these variations were in genes that help cells repair DNA.

Up first, Jong-Min Lee, Massachusetts General Hospital, updates the crowd on the latest results from the GeM-HD consortium – the international group of researchers searching genetic variations that influence HD onset. The GeM-HD consortium uses microchips that read tiny genetic variations across the entire genome of thousands of HD patients. This huge dataset lets them ask the question – are any of these variations influencing how early or late HD occurs? The latest version of the GeM-HD analysis includes 9,000 HD patients! This increase in sample size has enabled them to identify even more variations that modulate HD onset. These variations are strikingly close to even more DNA repair genes. Lee describes a very subtle variation in the sequence of the HD gene itself that also influences the age of HD symptom onset. The most dramatic effect GeM-HD has observed concern a gene called FAN1. Some variations in this gene have a beneficial effect on HD onset, and other variations have a bad effect. This suggests something FAN1 is doing is central to HD progression. Lee provides another stream of evidence which suggests that people who have more Fan1 in their brains have a later onset of HD. This shows the power of doing genetic studies – if we can find a way to bolster the activity of Fan1, it seems likely that it would be beneficial for HD progression.

Guo-Min Li, University of Texas Southwestern, studies a process called “mismatch repair”, one of the ways by which cells repair certain kinds of DNA damage. Mismatch repair allows cells to fix small errors that crop up when cells copy their DNA. Mutations in these genes lead to high rates of cancer, because genetic errors are left un-corrected. Li reminds the audience that while mismatch repair is normally very helpful for cells to remain healthy, it sometimes makes mistakes. One of these is the tendency for long repetitive stretches of DNA to lengthen. The mutation that causes every case of HD – a stretch of the DNA letters “C-A-G” – is one of these repetitive bits of DNA. Li’s lab is studying the process by which mismatch repair of long stretches of CAG makes them longer. Li’s lab has identified a few specific mismatch repair processes that drive CAG expansions – he suggests they may be a good target for new HD treatments.

Lorena Beese, Duke, also studies mismatch repair. Her lab focuses on the precise ways in which the mismatch repair proteins carry out their work – recognizing mistakes, cutting them out and then stitching the DNA back together. The machines that Beese’s lab has described in detail may be future targets for drugs designed to change how they interact with long CAG tracts, like the one in the HD gene.

Peter McKinnon, St. Jude Children’s Research Hospital, is an expert on DNA repair in the brain. He’s addressing the conference on the specific types of DNA damage that occur in the brain. The brain is interesting, from the point of view of DNA repair, because for most of our lives the neurons in our brain don’t divide. This means they can’t use some of the arms of the DNA repair pathways, which only work in dividing cells. McKinnon’s lab studies a specific kind of DNA damage called “base excision repair”, a process for fixing damage to only one of the two strands of DNA.

Partha Sarkar from University of Texas studies the Huntingtin protein and its direct interactions with DNA and DNA-handling proteins. Turns out mutant huntingtin hangs around with a protein called PNKP whose job is to look after DNA. In doing so, it prevents it doing its job. This raises the possibility that the HD mutation accelerates DNA damage.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

Updates from the EHDN Plenary Meeting 2020

Published date: 9 October, 2020

In September, the European Huntington’s Disease Network (EHDN) hosted a virtual webinar event which comprised presentations on some of the latest scientific research as well as clinical studies of Huntington’s disease (HD). Researchers, doctors, patients and other interested folks, tuned in for an afternoon of talks as well as question and answer sessions to learn ... Read more Updates from the EHDN Plenary Meeting 2020

Sad news from the SIGNAL study: pepinemab does not influence HD symptoms

Published date: 23 September, 2020

The SIGNAL clinical trial was designed to test a drug called pepinemab in people with early Huntington’s disease. The key results of that trial were recently announced, and unfortunately, pepinemab did not slow or improve HD symptoms as hoped. What was the SIGNAL trial, and who participated? The SIGNAL trial was launched in 2015 by ... Read more Sad news from the SIGNAL study: pepinemab does not influence HD symptoms

When genes are unstable: targeting somatic instability in HD

Published date: 8 September, 2020

What is somatic instability? We tend to think of DNA as a fixed blueprint, an overarching plan for the biological bricks and bridges that constitute our cells, organs, and bodies. But like any good plan, DNA is actually dynamic and adaptable. It gets frequent use as a template for creating the RNA messages that pave ... Read more When genes are unstable: targeting somatic instability in HD

Working as a team: Changes in brain development mean some brain regions may be slacking off

Published date: 17 August, 2020

The effect of the HD genetic expansion on brain development has been a hot topic in HD research. A team of researchers led by Dr. Sandrine Humbert at the Grenoble Institut Neurosciences, examined human fetal tissue to show that the mutant HD gene causes very early changes in the patterns of early brain development. But ... Read more Working as a team: Changes in brain development mean some brain regions may be slacking off

Caution urged for the use of gene-editing technology CRISPR

Published date: 12 August, 2020

A gene-editing tool known as CRISPR has been heralded as a breakthrough technology for scientists in the lab but also as a potential strategy to treat numerous genetic diseases, including Huntington’s. But a series of recent studies has suggested that CRISPR is less precise than previously thought, leading to unintended changes in the genome. Three ... Read more Caution urged for the use of gene-editing technology CRISPR

HD and Histamines: Targeting Hybrid Receptors to Quiet Stressful Brain Talk

Published date: 15 July, 2020

Dopamine is an important chemical messenger in the brain that becomes imbalanced in Huntington’s disease. Researchers recently described a creative way to restore the balance and treat symptoms in HD mice, using an antihistamine drug that acts on hybrid dopamine receptors. It’s an innovative approach to HD therapeutics, but don’t start reaching for allergy meds ... Read more HD and Histamines: Targeting Hybrid Receptors to Quiet Stressful Brain Talk

Welcome to our new website!

Please bear with us while we iron out the last minute wrinkles! If you have any feedback about our new site, please fill out the form below.