1800 244 735

Helpline (02) 9874 9777

Huntington's Disease Therapeutics Conference 2017 – Day 2

Day two of the conference looks at some of the most promising approaches to fighting Huntington’s disease.

Huntingtin lowering therapies

Exciting session planned for this morning, as the conference discusses “Huntingtin lowering” approaches to treating HD.

The first talk is from HDBuzz’s own Ed Wild (University College London), who is interested in developing “biomarkers” for HD trials. A biomarker is a lab test that can be done to track the progression of a disease, or the effect of a treatment. Good disease biomarkers for HD would track the progression of the disease more precisely than simply looking at clinical measurements like movement abnormalities. Tracking the progression of HD is complicated and we don’t have any reliable tests for measuring it in the lab, especially in blood samples. Wild’s group has been developing tests to measure cellular debris released by sick and dying brain cells. As brain cells get sick and die in brain diseases like HD, they release their contents into the cerebrospinal fluid. Some of these debris leak into the blood, where very sensitive new tools allow researchers to measure them. During the course of other brain diseases – like Alzheimer’s and Parkinson’s – brain cell debris levels rise in the blood. Wild’s team has discovered a marker in the blood, released from sick brain cells, that increases consistently as HD progresses. Increasingly severe HD mutations leads to higher levels of brain cell debris in the blood, as does aging. This is exciting – for the first time we can track the health of brain cells from blood samples alone

Next up, Harry Orr (U. Minnesota), who works primarily in a disease called spinocerebellar ataxia 1 (SCA1). Like HD, SCA1 is caused by the expansion of a repetitive stretch of DNA with the sequence “C-A-G”. In SCA1 this genetic stutter occurs in a gene called “Ataxin-1”, not the HD gene. We can learn a lot by comparing how the same type of mutation, when it occurs in different genes, causes brain cells to become sick. Orr’s lab has shown that reducing levels of the mutant gene which causes SCA1 improves symptoms in mice. For many years, Orr’s lab has been using mouse models of SCA1 to try and discover interventions to slow disease. Orr’s lab is using antisense oligonucleotides (ASOs) to reduce levels of Ataxin-1 in the brain, similar to approaches being taken in HD. Comparing results between SCA1 and HD could help understand both diseases better.

Nicole Deglon (Lausanne U.) has worked for many years on huntingtin lowering approaches to HD therapy. She has a special interest in using engineered viruses to deliver huntingtin lowering tools into brain cells. New “gene editing” tools, including one called CRISPR/Cas9, allow researchers to modify DNA in adult cells. Deglon’s team has developed several gene editing tools designed to reduce levels of the HD gene. Using her viruses, Deglon is able to deliver these gene editing tools into the brains of HD mice, where they work very efficiently. One concern about gene editing tools is that the “scissors” that cut the DNA stick around forever, long after they’re needed. Deglon’s team has developed a very cool new trick to turn off the DNA scissors after they inactivate the HD gene. This is an exciting advance – it seems likely to make gene editing in the brain safer in the long-term. Her group has evidence that inactivating gene editing tools leads to less unintended cuts in DNA.

The final speaker in this morning’s huntingtin lowering discussion is Liz Doherty from the CHDI Foundation. The foundation is pursuing a wide range of huntingtin lowering technologies Doherty describes the foundation’s search for a “small molecule” that will lower huntingtin levels. Unlike ASOs or the gene editing tools that Deglon described, a small molecule is a drug that could be taken as a pill. This would be a better way to take medicine, but so far no one has ever identified a small molecule which lowers huntingtin levels. Now CHDI is conducting an exhaustive search of over 130,000 different chemicals, hoping one of them will result in huntingtin lowering. In the first round of searching, they’ve identified 4 different chemicals that result in really robust huntingtin lowering in cells. Important to develop new ways to achieve huntingtin lowering, in case any unexpected concerns arise with other approaches like ASOs. So exciting to see the huge diversity of approaches to achieve huntingtin lowering at different stages of development.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

Scientists identify precisely how pridopidine works in models of Huntington’s disease

Published date: 12 June, 2021

Pridopidine is a drug developed to treat Huntington’s disease (HD) and now scientists have a clearer understanding of how it works in the body and brain. In a series of academic papers, researchers figured out that pridopidine is working by targeting a particular receptor protein called S1R. With this new understanding, the researchers believe pridopidine ... Read more

Huntington's disease therapeutics conference 2021 – Day 3

Published date: 29 April, 2021

We are back for the last day of the virtual 2021 CHDI Therapeutics conference. This article summarises our live Twitter updates on the exciting science being presented, which you can find with the hashtag #HDTC2021. The final session of the conference will provide the latest news on more Huntington’s disease clinical programs. A new way ... Read more

Huntington's disease therapeutics conference 2021 – Day 2

Published date: 28 April, 2021

We are back with Day 2 of the virtual 2021 CHDI Therapeutics conference. This article summarises our live Twitter updates on the exciting science being presented, which you can continue to follow with the hashtag #HDTC2021. The morning session focussed on promising HD therapeutics that are in preclinical development and the afternoon session covered different ... Read more

Huntington’s disease therapeutics conference 2021 – Day 1

Published date: 28 April, 2021

The CHDI Therapeutics Conference 2021 kicked off today. This article summarizes our live Twitter updates on the exciting science being presented, which you can continue to follow with the hashtag #HDTC2021. The morning of Day 1 focused on clinical trial updates, while the afternoon explored genetic modifiers of HD and how they might be harnessed ... Read more

Huntington’s disease clinical trial round up

Published date: 26 April, 2021

It seems like the HD community has been inundated with updates from different companies and clinical trials recently. The news is far from complete doom and gloom; although there have been some real disappointments from some of the frontrunner trials, there are also positive updates from many different companies and lots of reasons for us ... Read more

Good news from uniQure: gene therapy trial on track, and promising data in animals

Published date: 15 April, 2021

Two recent press releases from uniQure provide welcome good news: the first ever HD gene therapy, known as AMT-130, has been administered via brain surgery to a small set of participants in an early safety trial. At the same time, uniQure has published findings in HD animal models that increase confidence in the drug’s ability ... Read more