Huntington's Disease Therapeutics Conference 2017 – Day 2

Day two of the conference looks at some of the most promising approaches to fighting Huntington’s disease.

Huntingtin lowering therapies

Exciting session planned for this morning, as the conference discusses “Huntingtin lowering” approaches to treating HD.

The first talk is from HDBuzz’s own Ed Wild (University College London), who is interested in developing “biomarkers” for HD trials. A biomarker is a lab test that can be done to track the progression of a disease, or the effect of a treatment. Good disease biomarkers for HD would track the progression of the disease more precisely than simply looking at clinical measurements like movement abnormalities. Tracking the progression of HD is complicated and we don’t have any reliable tests for measuring it in the lab, especially in blood samples. Wild’s group has been developing tests to measure cellular debris released by sick and dying brain cells. As brain cells get sick and die in brain diseases like HD, they release their contents into the cerebrospinal fluid. Some of these debris leak into the blood, where very sensitive new tools allow researchers to measure them. During the course of other brain diseases – like Alzheimer’s and Parkinson’s – brain cell debris levels rise in the blood. Wild’s team has discovered a marker in the blood, released from sick brain cells, that increases consistently as HD progresses. Increasingly severe HD mutations leads to higher levels of brain cell debris in the blood, as does aging. This is exciting – for the first time we can track the health of brain cells from blood samples alone

Next up, Harry Orr (U. Minnesota), who works primarily in a disease called spinocerebellar ataxia 1 (SCA1). Like HD, SCA1 is caused by the expansion of a repetitive stretch of DNA with the sequence “C-A-G”. In SCA1 this genetic stutter occurs in a gene called “Ataxin-1”, not the HD gene. We can learn a lot by comparing how the same type of mutation, when it occurs in different genes, causes brain cells to become sick. Orr’s lab has shown that reducing levels of the mutant gene which causes SCA1 improves symptoms in mice. For many years, Orr’s lab has been using mouse models of SCA1 to try and discover interventions to slow disease. Orr’s lab is using antisense oligonucleotides (ASOs) to reduce levels of Ataxin-1 in the brain, similar to approaches being taken in HD. Comparing results between SCA1 and HD could help understand both diseases better.

Nicole Deglon (Lausanne U.) has worked for many years on huntingtin lowering approaches to HD therapy. She has a special interest in using engineered viruses to deliver huntingtin lowering tools into brain cells. New “gene editing” tools, including one called CRISPR/Cas9, allow researchers to modify DNA in adult cells. Deglon’s team has developed several gene editing tools designed to reduce levels of the HD gene. Using her viruses, Deglon is able to deliver these gene editing tools into the brains of HD mice, where they work very efficiently. One concern about gene editing tools is that the “scissors” that cut the DNA stick around forever, long after they’re needed. Deglon’s team has developed a very cool new trick to turn off the DNA scissors after they inactivate the HD gene. This is an exciting advance – it seems likely to make gene editing in the brain safer in the long-term. Her group has evidence that inactivating gene editing tools leads to less unintended cuts in DNA.

The final speaker in this morning’s huntingtin lowering discussion is Liz Doherty from the CHDI Foundation. The foundation is pursuing a wide range of huntingtin lowering technologies Doherty describes the foundation’s search for a “small molecule” that will lower huntingtin levels. Unlike ASOs or the gene editing tools that Deglon described, a small molecule is a drug that could be taken as a pill. This would be a better way to take medicine, but so far no one has ever identified a small molecule which lowers huntingtin levels. Now CHDI is conducting an exhaustive search of over 130,000 different chemicals, hoping one of them will result in huntingtin lowering. In the first round of searching, they’ve identified 4 different chemicals that result in really robust huntingtin lowering in cells. Important to develop new ways to achieve huntingtin lowering, in case any unexpected concerns arise with other approaches like ASOs. So exciting to see the huge diversity of approaches to achieve huntingtin lowering at different stages of development.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

HD and Histamines: Targeting Hybrid Receptors to Quiet Stressful Brain Talk

Published date: 15 July, 2020

Dopamine is an important chemical messenger in the brain that becomes imbalanced in Huntington’s disease. Researchers recently described a creative way to restore the balance and treat symptoms in HD mice, using an antihistamine drug that acts on hybrid dopamine receptors. It’s an innovative approach to HD therapeutics, but don’t start reaching for allergy meds ... Read more HD and Histamines: Targeting Hybrid Receptors to Quiet Stressful Brain Talk

Changing jobs: converting other cell types into neurons

Published date: 23 June, 2020

Researchers have known for quite some time that HD causes a progressive loss of neurons. But what if we could find a way to fill their place? In a new report, researchers used an intriguing strategy in living mice to do just that – they converted a different type of brain cell into neurons, with ... Read more Changing jobs: converting other cell types into neurons

HD Young Adult Study defines the sweet spot: symptom-free with measurable changes

Published date: 27 May, 2020

A new study headed up by Dr. Sarah Tabrizi, a pioneer in HD research, assessed pre-manifest HD young adults many years from predicted symptom onset with a battery of clinical tests. The goal of this study was to identify a sweet spot – a time when HD participants weren’t experiencing any observable symptoms, but when ... Read more HD Young Adult Study defines the sweet spot: symptom-free with measurable changes

Fountain of youth: HTT protein repairs neurons by maintaining youthful state

Published date: 13 May, 2020

A team of scientists has recently published their findings on how our bodies are able to repair brain and spinal cord injuries. They found that the huntingtin protein plays an important role in repairing damaged nerve cells. Repairing nervous system damage – the holy grail of medical science It has long been the ambition of ... Read more Fountain of youth: HTT protein repairs neurons by maintaining youthful state
Light and sleep

Light and Sleep

Published date: 7 April, 2020

Light & sleep Neurofilament Light Protein and Lifestyle Factors Commentary Words Dr Travis Cruickshank and Dr Danielle Bartlett

What does COVID-19 mean for Huntington’s disease families and HD research?

Published date: 6 April, 2020

COVID-19, short for coronavirus disease 2019, has taken the world by storm in almost every sense – many people have been infected with the SARS-CoV-2 virus, it’s created shopping pandemonium in stores, and many people are isolated at home. But behind that frenzied storm, scientists around the world have been working tirelessly to move research ... Read more What does COVID-19 mean for Huntington’s disease families and HD research?

Welcome to our new website!

Please bear with us while we iron out the last minute wrinkles! If you have any feedback about our new site, please fill out the form below.