1800 244 735

Helpline (02) 9874 9777

Huntington's Disease Therapeutics Conference 2017 – Day 2

Day two of the conference looks at some of the most promising approaches to fighting Huntington’s disease.

Huntingtin lowering therapies

Exciting session planned for this morning, as the conference discusses “Huntingtin lowering” approaches to treating HD.

The first talk is from HDBuzz’s own Ed Wild (University College London), who is interested in developing “biomarkers” for HD trials. A biomarker is a lab test that can be done to track the progression of a disease, or the effect of a treatment. Good disease biomarkers for HD would track the progression of the disease more precisely than simply looking at clinical measurements like movement abnormalities. Tracking the progression of HD is complicated and we don’t have any reliable tests for measuring it in the lab, especially in blood samples. Wild’s group has been developing tests to measure cellular debris released by sick and dying brain cells. As brain cells get sick and die in brain diseases like HD, they release their contents into the cerebrospinal fluid. Some of these debris leak into the blood, where very sensitive new tools allow researchers to measure them. During the course of other brain diseases – like Alzheimer’s and Parkinson’s – brain cell debris levels rise in the blood. Wild’s team has discovered a marker in the blood, released from sick brain cells, that increases consistently as HD progresses. Increasingly severe HD mutations leads to higher levels of brain cell debris in the blood, as does aging. This is exciting – for the first time we can track the health of brain cells from blood samples alone

Next up, Harry Orr (U. Minnesota), who works primarily in a disease called spinocerebellar ataxia 1 (SCA1). Like HD, SCA1 is caused by the expansion of a repetitive stretch of DNA with the sequence “C-A-G”. In SCA1 this genetic stutter occurs in a gene called “Ataxin-1”, not the HD gene. We can learn a lot by comparing how the same type of mutation, when it occurs in different genes, causes brain cells to become sick. Orr’s lab has shown that reducing levels of the mutant gene which causes SCA1 improves symptoms in mice. For many years, Orr’s lab has been using mouse models of SCA1 to try and discover interventions to slow disease. Orr’s lab is using antisense oligonucleotides (ASOs) to reduce levels of Ataxin-1 in the brain, similar to approaches being taken in HD. Comparing results between SCA1 and HD could help understand both diseases better.

Nicole Deglon (Lausanne U.) has worked for many years on huntingtin lowering approaches to HD therapy. She has a special interest in using engineered viruses to deliver huntingtin lowering tools into brain cells. New “gene editing” tools, including one called CRISPR/Cas9, allow researchers to modify DNA in adult cells. Deglon’s team has developed several gene editing tools designed to reduce levels of the HD gene. Using her viruses, Deglon is able to deliver these gene editing tools into the brains of HD mice, where they work very efficiently. One concern about gene editing tools is that the “scissors” that cut the DNA stick around forever, long after they’re needed. Deglon’s team has developed a very cool new trick to turn off the DNA scissors after they inactivate the HD gene. This is an exciting advance – it seems likely to make gene editing in the brain safer in the long-term. Her group has evidence that inactivating gene editing tools leads to less unintended cuts in DNA.

The final speaker in this morning’s huntingtin lowering discussion is Liz Doherty from the CHDI Foundation. The foundation is pursuing a wide range of huntingtin lowering technologies Doherty describes the foundation’s search for a “small molecule” that will lower huntingtin levels. Unlike ASOs or the gene editing tools that Deglon described, a small molecule is a drug that could be taken as a pill. This would be a better way to take medicine, but so far no one has ever identified a small molecule which lowers huntingtin levels. Now CHDI is conducting an exhaustive search of over 130,000 different chemicals, hoping one of them will result in huntingtin lowering. In the first round of searching, they’ve identified 4 different chemicals that result in really robust huntingtin lowering in cells. Important to develop new ways to achieve huntingtin lowering, in case any unexpected concerns arise with other approaches like ASOs. So exciting to see the huge diversity of approaches to achieve huntingtin lowering at different stages of development.

Share on facebook
Share on twitter
Share on pinterest
Share on email

Latest Research Articles

Updates from the EHDN Meeting 2021

Published date: 28 October, 2021

Last month, the Huntington’s disease (HD) research community, patients and other stakeholders met online at the European Huntington’s disease network (EHDN) conference. Despite the ongoing global pandemic, there is a tremendous amount of work underway in labs and clinics around the world as researchers continue to better understand HD and how we might best treat ... Read more

Real talk: Q&A with Roche about GENERATION-HD1

Published date: 28 September, 2021

At the end of day 1 of the European Huntington’s Disease Network (EHDN) conference, the HDBuzz team (minus one) sat down for a zoom chat with the team at Roche to have a frank, candid discussion about the recent halting of GENERATION-HD1, the Phase 3 clinical trial that was testing the ability of the antisense ... Read more

Another tool in the box: Creation of a molecular “dimmer switch” advances gene editing

Published date: 30 August, 2021

A team of scientists recently created an innovative genetic system where a drug taken by mouth could be used to control the action of a gene editor, like those used in CRISPR systems. This has useful applications for research studies in cells and animals, and perhaps most importantly, could lead to improvements in the safety ... Read more

Unpacking recent gene therapy press

Published date: 16 August, 2021

A recent announcement from Voyager Therapeutics outlined a shift in the company’s strategy towards an exciting new technology for gene therapy delivery. Unfortunately this also means that in the short term, they have dropped previous plans to test an HD gene therapy in people with HD. While this news is disappointing, the decision to embrace ... Read more

Does blood hold the key to testing treatments earlier in HD patients?

Published date: 4 August, 2021

Researchers at Johns Hopkins led by Wenzhen Duan have developed a non-invasive way to track progression of Huntington’s disease (HD) which could be used before patients even start showing symptoms. Using a type of brain scan called an MRI, the researchers have shown that in mouse models of HD they can accurately measure the amount ... Read more

A first for CRISPR gene editing could have wider applications for human disease

Published date: 21 July, 2021

A recent clinical trial successfully tested the safety of CRISPR gene editing to reduce the amount of a toxic protein in patients with Familial Transthyretic (TTR) Amyloidosis. Although this study is unrelated to Huntington’s disease, it’s a first for gene editing, and the results could have implications for HD and other brain disorders. CRISPR-Cas9 Clustered ... Read more