1800 244 735

HD Therapeutics Conference 2013 Updates: Day 1

Our first daily report from the annual Huntington’s Disease Therapeutics Conference in Venice, Italy. We’ll be bringing you live updates via Twitter over the next two days. You can use HDBuzz.net, comment on Facebook or tweet @HDBuzzFeed to send us questions, comments and queries.

9:00 – Buonasera from Venice, where HDBuzz will be tweeting the latest Huntington’s disease research news from the annual therapeutics conference

9:08 – Huntington’s disease therapeutics conference kicks off with a session on systems biology

9:09 – Systems biology tries to understand networks of connected chemicals and processes, rather than focusing narrowly on one thing

9:10 – The hope is that this systems approach will help us better understand Huntington’s disease and develop and test treatments

9:12 – Robert Pacifici of CHDI: one tiny change, the HD mutation, causes lots of changes in the biology of people who carry it

10:35 – Jim Rosinski of CHDI: new technologies are being used to get better understanding of HD, like RNA sequencing – what genes are on/off

10:38 – Rosinski: “Amazing things are possible now” and the HD gene gives us a head start for understanding the disease

10:38 – HD drug development company CHDI is integrating techniques from engineering and computer science to better understand HD

12:10 – Lesley Jones is studying HD mice to understand how much they look like HD patients. In many important ways they’re similar.

12:16 – William Yang is using mouse brains to map out which proteins the HD protein interacts with. More targets for drug developers

12:29 – Collecting all this data from HD patients and animals poses computational challenges, that Steve Horvath is working hard to fix

12:43 – With nearly 300 researchers attending, this is the biggest ever HD therapeutics conference

14:33 – Why do we have an HD gene at all? Elena Cattaneo is studying diverse animals, including sea urchins, to try to understand

14:53 – According to Dr Cattaneo, the normal HD gene seems to have important roles during the development of the brain

15:10 – If the HD gene is important for brain development, what happens in brains of people born with the HD mutation? Peg Nopoulos studies this

15:11 – Nopoulos' HD-KIDS study follows school-age kids at risk for HD. Gene testing is done without anyone involved finding their result

15:14 – Nopoulos: major brain changes occur throughout childhood

15:19 – Nopoulos: KIDS-HD allows us to study not just HD but also the role of huntingtin in normal brain development

15:20 – Even in HD-negative people, there is variation in the number of CAG repeats in the huntingtin gene.

15:25 – In kids who don’t have the HD mutation, some aspects of thinking and behavior are subtly influenced by CAG repeat length.

15:28 – Some brain areas are also affected by the number of CAG repeats in the HD gene – in kids who are NEGATIVE for the HD mutation.

15:29 – Fascinating insights into the core mystery of Huntington’s disease from Nopoulos: what does the normal huntingtin protein do?

15:33 – In kids who DO carry the HD mutation, Nopoulos finds subtle changes that are compensated for, but are their brains more vulnerable?

15:50 – Audience question from statistician raises concerns that statistical methods used to test Nopoulos' data may not be rigorous enough for small sample

16:25 – Jeff Macklis of Harvard studies the neurons connecting brain’s cortex (crinkly surface) to the basal ganglia (movement control bit)

16:44 – Macklis: understanding of how different cell types become neurons and how they function has improved dramatically in past 5 years

17:16 – Ali Brivanlou of Rockefeller University is an expert on human development. Huntingtin protein is found in the very earliest embryo cells

17:17 – Using RNA sequencing, Brivanlou has identified 4 new RNA message molecules for huntingtin in embryo cells. These could produce new proteins

17:18 – Brivanlou’s ‘new’ huntingtin molecules are created by reading the huntingtin gene in different ways to create ‘spliced’ RNA messages

17:20 – The function of these new huntingtin forms in embryonic cells is not known. Remember we’re talking about normal, not mutant huntingtin here.

17:31 – Brivanlou: Embryos without huntingtin die after a week of development, but why? It changes the response to growth molecules

17:34 – Brivanlou: huntingtin has an influence on the metabolism of embryos – that’s how they use energy & do chemical reactions.

17:38 – Brivanlou: in embryos with the HD mutation, sugar metabolism is unexpectedly altered. It’s unclear whether this affects development

17:43 – Today’s biggest news: Roche & Isis sign $30million deal to take gene silencing drugs for HD to trials

Sunset conclusions

On the opening day of the biggest ever Huntington’s disease therapeutics conference, we heard a lot about studying the complexities of the brain, and the role of the huntingtin protein, still mysterious twenty years after its discovery – but not very much about drugs. But understanding how the brain develops and works, and ‘knowing the enemy’ – the mutant huntingtin protein and its damaging effects – are both crucial if we are going to safely and rapidly develop the treatments we’re all working towards. You never know where the next big idea will come from, and it’s from fundamental, imaginative research of the kind we’ve hear about today that bright new ideas for possible treatments may well spring up.

Latest Research Articles

Getting to the Root of Huntington's Disease: A Plant-Based Approach

Published date: 15 October, 2023

Researchers studied a fragment of the Huntington’s disease (HD) protein in plants and found a new way to stop it from forming toxic clumps. A special plant protein that the team identified can prevent harmful buildup in plants as well as in some HD model systems, showing potential for this approach as a possible way ... Read more

Could halting CAG expansions be a new treatment for HD?

Published date: 5 October, 2023

A recent paper from a group at UMass Chan Medical School, spearheaded by Dr. Daniel O'Reilly and led by Dr. Anastasia Khvorova, used genetic strategies to lower a protein other than huntingtin. This time the researchers went after a gene called MSH3. This is a gene that’s been getting a lot of attention in Huntington’s ... Read more

Tipping the balance; new insights into HD genetic modifiers

Published date: 1 September, 2023

Genetic modifiers can influence when HD symptoms begin. Some of these genes encode for different types of molecular machines whose normal job is to repair our DNA when it is broken or damaged. A recently published study from scientists at Thomas Jefferson University uncovers details of how these molecular machines help repair damaged DNA structures ... Read more

Drug to treat movement symptoms of HD approved by FDA

Published date: 22 August, 2023

The vast majority of people with Huntington’s disease experience movement symptoms known as chorea. Valbenazine, also known as INGREZZA, has recently been approved by the United States Food and Drug Administration (FDA), allowing doctors in the USA to prescribe this medicine for Huntington’s disease (HD) chorea. In this article we go through the key points ... Read more

Youthful competitors: young brain cells oust the old

Published date: 8 August, 2023

When you lose something, an easy solution can be to just replace it. But what if the something you’ve lost are cells in the brain? Can they simply be replaced? Some researchers have been working toward this for Huntington’s disease (HD) by injecting new cells into the brains of animal models. A recent publication that ... Read more

Updates from PTC Therapeutics and uniQure on their huntingtin-lowering trials

Published date: 21 June, 2023

On 21st June, both PTC Therapeutics and uniQure shared data from their respective clinical trials, both testing huntingtin-lowering as an approach to treat HD, but with different types of therapies. In this article we go through the data they each presented, what it all means and the next steps the companies will be taking. Treating ... Read more