1800 244 735

Helpline (02) 9874 9777

HD Therapeutics Conference 2013 Updates: Day 1

Our first daily report from the annual Huntington’s Disease Therapeutics Conference in Venice, Italy. We’ll be bringing you live updates via Twitter over the next two days. You can use HDBuzz.net, comment on Facebook or tweet @HDBuzzFeed to send us questions, comments and queries.

9:00 – Buonasera from Venice, where HDBuzz will be tweeting the latest Huntington’s disease research news from the annual therapeutics conference

9:08 – Huntington’s disease therapeutics conference kicks off with a session on systems biology

9:09 – Systems biology tries to understand networks of connected chemicals and processes, rather than focusing narrowly on one thing

9:10 – The hope is that this systems approach will help us better understand Huntington’s disease and develop and test treatments

9:12 – Robert Pacifici of CHDI: one tiny change, the HD mutation, causes lots of changes in the biology of people who carry it

10:35 – Jim Rosinski of CHDI: new technologies are being used to get better understanding of HD, like RNA sequencing – what genes are on/off

10:38 – Rosinski: “Amazing things are possible now” and the HD gene gives us a head start for understanding the disease

10:38 – HD drug development company CHDI is integrating techniques from engineering and computer science to better understand HD

12:10 – Lesley Jones is studying HD mice to understand how much they look like HD patients. In many important ways they’re similar.

12:16 – William Yang is using mouse brains to map out which proteins the HD protein interacts with. More targets for drug developers

12:29 – Collecting all this data from HD patients and animals poses computational challenges, that Steve Horvath is working hard to fix

12:43 – With nearly 300 researchers attending, this is the biggest ever HD therapeutics conference

14:33 – Why do we have an HD gene at all? Elena Cattaneo is studying diverse animals, including sea urchins, to try to understand

14:53 – According to Dr Cattaneo, the normal HD gene seems to have important roles during the development of the brain

15:10 – If the HD gene is important for brain development, what happens in brains of people born with the HD mutation? Peg Nopoulos studies this

15:11 – Nopoulos' HD-KIDS study follows school-age kids at risk for HD. Gene testing is done without anyone involved finding their result

15:14 – Nopoulos: major brain changes occur throughout childhood

15:19 – Nopoulos: KIDS-HD allows us to study not just HD but also the role of huntingtin in normal brain development

15:20 – Even in HD-negative people, there is variation in the number of CAG repeats in the huntingtin gene.

15:25 – In kids who don’t have the HD mutation, some aspects of thinking and behavior are subtly influenced by CAG repeat length.

15:28 – Some brain areas are also affected by the number of CAG repeats in the HD gene – in kids who are NEGATIVE for the HD mutation.

15:29 – Fascinating insights into the core mystery of Huntington’s disease from Nopoulos: what does the normal huntingtin protein do?

15:33 – In kids who DO carry the HD mutation, Nopoulos finds subtle changes that are compensated for, but are their brains more vulnerable?

15:50 – Audience question from statistician raises concerns that statistical methods used to test Nopoulos' data may not be rigorous enough for small sample

16:25 – Jeff Macklis of Harvard studies the neurons connecting brain’s cortex (crinkly surface) to the basal ganglia (movement control bit)

16:44 – Macklis: understanding of how different cell types become neurons and how they function has improved dramatically in past 5 years

17:16 – Ali Brivanlou of Rockefeller University is an expert on human development. Huntingtin protein is found in the very earliest embryo cells

17:17 – Using RNA sequencing, Brivanlou has identified 4 new RNA message molecules for huntingtin in embryo cells. These could produce new proteins

17:18 – Brivanlou’s ‘new’ huntingtin molecules are created by reading the huntingtin gene in different ways to create ‘spliced’ RNA messages

17:20 – The function of these new huntingtin forms in embryonic cells is not known. Remember we’re talking about normal, not mutant huntingtin here.

17:31 – Brivanlou: Embryos without huntingtin die after a week of development, but why? It changes the response to growth molecules

17:34 – Brivanlou: huntingtin has an influence on the metabolism of embryos – that’s how they use energy & do chemical reactions.

17:38 – Brivanlou: in embryos with the HD mutation, sugar metabolism is unexpectedly altered. It’s unclear whether this affects development

17:43 – Today’s biggest news: Roche & Isis sign $30million deal to take gene silencing drugs for HD to trials

Sunset conclusions

On the opening day of the biggest ever Huntington’s disease therapeutics conference, we heard a lot about studying the complexities of the brain, and the role of the huntingtin protein, still mysterious twenty years after its discovery – but not very much about drugs. But understanding how the brain develops and works, and ‘knowing the enemy’ – the mutant huntingtin protein and its damaging effects – are both crucial if we are going to safely and rapidly develop the treatments we’re all working towards. You never know where the next big idea will come from, and it’s from fundamental, imaginative research of the kind we’ve hear about today that bright new ideas for possible treatments may well spring up.

Latest Research Articles

Huntington’s disease therapeutics conference 2023 – Day 3

Published date: 22 May, 2023

Welcome to the third and final day of HD science, live from Dubrovnik, Croatia! Our Twitter updates are compiled below. Continue to follow live updates for the final day of the conference with the hashtag #HDTC2023.nCheck out our coverage of Day 1 here: https://en.hdbuzz.net/343 and day 2 here: https://en.hdbuzz.net/344. Biomarkers This morning’s session will focus ... Read more

Start here!

Published date: 22 May, 2023

Welcome to HDBuzz! This special page is for people who are new to Huntington’s disease, or new to the world of HD research. Reading the articles linked here will help you pick up the basics of what Huntington’s disease is, and get up to speed with some of the most promising things scientists are doing ... Read more

Huntington’s disease therapeutics conference 2023 – Day 2

Published date: 4 May, 2023

Welcome to the second full day of HD science, live from Dubrovnik! After yesterday’s amazing basic science talks, today begins with a session focused on companies developing new experimental treatments for HD. Our Twitter updates are compiled below. Continue to follow live updates for the rest of the conference with the hashtag #HDTC2023. Check out ... Read more

Huntington’s disease therapeutics conference 2023 – Day 1

Published date: 26 April, 2023

Hello from Dubrovnik, Croatia, where the 2023 CHDI Therapeutics Conference will be taking place from Monday, April 24th, through Thursday, April 27th! This conference is a big one for HD researchers worldwide, from industry, academia, and nonprofit. Dozens of scientists will give talks on all things HD, from genetics, to therapeutics, to clinical trial news. ... Read more

PROOF-HD study of pridopidine ends with negative result

Published date: 25 April, 2023

Top line results of the PROOF-HD study, run by Prilenia Therapeutics and testing pridopidine, have been announced at the American Academy of Neurology convention. Sadly the trial outcome was negative. We recap the history of pridopidine in Huntington’s disease, review the trial results, and figure out where this disappointing result leaves us. The drug: pridopidine ... Read more

Astrocytes: The new star in HD research?

Published date: 19 April, 2023

The most obvious changes related to Huntington’s disease (HD) happen to neurons, the nervous system’s messenger cells that send and receive information throughout the brain and spinal cord. However, many different cell types are affected by HD. A recently published article reviewed research findings from various labs, describing how a specific type of brain cell, ... Read more