1800 244 735

Helpline (02) 9874 9777

Gene therapy meets stem cells in liver disease success

Gene therapy could correct spelling mistakes in our DNA, while stem cells promise transplant operations that don’t need powerful immune suppressing drugs. Scientists have now combined the two techniques in a genetic liver disease. Several challenges remain before this could work in Huntington’s disease though.

Precision gene therapy

Huntington’s disease is one of many conditions caused by a genetic error. A mistake in the genetic recipe for the huntingtin protein causes HD. All cells carry this mistake in their genetic make-up and, as a result, produce the abnormal protein.

Common sense suggests the possibility of just going into cells and ‘surgically’ removing the faulty bit. But thinking about how large the entire genome is, in relation to the small size of the HD mutation – 6 billion letters versus just a few dozen extra letters in HD – recalls a search for a needle in a haystack.

Techniques to achieve feats like this have advanced in recent years, and it’s now possible to perform precision ‘genetic surgery’ in a test tube – but challenges remain, like the complex genetic manipulations needed to achieve a desired change, the luck of the draw in removing the mutation correctly, and the risk that genetic ‘tools’ left behind might cause harm.

Stem cells

Stem cells can divide into new stem cells, and develop into specialized cells including neurons.

Human beings develop from embryonic stem cells within the womb; these stem cells can form any type of tissue. But even as adults, we have stem cells in all our organs. And our understanding of stem cells has improved dramatically in the past few years.

It’s now possible, for example, to take a skin sample or pluck a hair and, using a special treatment, convince the stem cells in the skin or hair follicle to develop into different tissues. These cells are called inducible pluripotent stem cells, or iPS cells.

As discussed in a recent HDBuzz article, stem cell technology is in use right now as a tool for studying medical conditions including HD, and in the future may generate treatments, too. In fact, stem cells are already being used to treat certain blood disorders. In theory, stem cells could be used to re-grow entire organs, or bits of them.

Growing a new brain or using stem cells to repair the brain is currently well beyond our abilities. Another problem in HD is that because it’s a genetic disorder, the patient’s own stem cells cannot be used directly, since they also contain the genetic defect.

Combining two holy grails

For the first time, scientists at the Wellcome Trust Sanger Institute and the University of Cambridge have combined stem cell technology with precision gene therapy. Their results were recently reported in the journal Nature.

They were working on a form of liver disease called alpha-1-antitrypsin deficiency, or alpha-1.

Alpha 1 is caused by a fault in a single pair of genetic letters. As a result, a protein made in the liver, and then usually released to protect the body from damage, gets trapped in the liver where it causes liver cirrhosis. Alpha-1 is one of the most common genetic disorders, affecting about 1 in 2000 people. The only treatment currently available is liver transplantation – which is a huge operation and means a lifetime of taking drugs to prevent organ rejection.

Led by Dr Ludovic Vallier, the researchers took a skin cell from an alpha-1 patient and turned it into a stem cell. They then used a much more refined genetic tool as a molecular scalpel to cut out the mutation, and replace it with the correct genetic letter. The stem cells were then treated so that they became liver cells. They did a perfect job as liver cells, including normal production and release of the healthy protein.

The next step was to inject these cells into mice, where they colonised the liver and worked normally for many weeks.

If this could be developed into a therapy for alpha-1, it could be much better than a transplant, because the use of a patient’s own stem cells means there’d be no need to take immune suppressing drugs.

What does this mean for Huntington’s disease?

These findings are obviously most hopeful for people with genetic diseases affecting the liver, but they’re also an important proof of the idea of combining stem cells and gene therapy to produce treatments, that could eventually be re-tooled for other genetic diseases.

Many questions still need to be answered before this becomes a real treatment option for Huntington’s disease.

For instance, one general risk of stem cells is that the use of stem cells might cause the formation of tumors.

In people with HD, the situation is even more complicated because the brain, unlike the liver, is mostly made up of cells that can’t divide any more. In the liver, you can tap into a self-renewal process that is going on all the time. If you introduce liver cells that are free of the genetic mutation, these cells can join that process. In the brain, as far as we know, there isn’t much self-renewal going on that could be harnessed in this way.

Some studies in HD have tried to use embryonic stem cells as ‘replacements’ for unhealthy neurons in part of the brain particularly affected by HD, the striatum. Results have been mixed, and we’re really only just beginning to understand the complexities of using stem cells to replace lost neurons and rewire the brain.

But it is interesting to speculate that, apart from avoiding the need for immune suppressing drugs, implanting a person’s own stem cells might be better than being given stem cells from somebody else.

An important extra hurdle is that HD is caused by damaging effects of a mutant protein, whereas the main problem in alpha-1 is a missing protein. It’s more of a challenge to prevent or reverse toxic effects than to replace something that’s missing.

Vallier’s team has been able to convincingly marry up two cutting edge science techniques – stem cells and precision gene therapy. But there’s a long way to go for those with genetic liver disease, and even longer for people with HD, until we’ll be making an appointment with a genetic surgeon.

Latest Research Articles

Disappointing news from Novartis about branaplam and the VIBRANT-HD trial

Published date: 9 December, 2022

The pharmaceutical company Novartis has released a community update which announces that they are ending development of branaplam, a huntingtin lowering drug, for possible treatment in Huntington’s disease (HD). This news comes following recent bad news about side effects of branaplam in HD patients, being tested in the VIBRANT-HD clinical trial, dosing of which was ... Read more

Update on the PTC Therapeutics PIVOT-HD Trial

Published date: 2 November, 2022

Recruitment of participants into the US arm of the PTC Therapeutics PIVOT-HD trial has been paused. Since this announcement, there have been a lot of different (and confusing!) headlines about the pause in recruitment. In this article, we will lay out what is going on and what this announcement means. What is the aim of ... Read more

Forward momentum for Roche and Wave in latest news about huntingtin-lowering trials

Published date: 30 September, 2022

In the past week or so, during and following a big HD research conference, two companies developing medicines for Huntington’s disease announced news about their huntingtin-lowering drugs. First, the pharmaceutical company Roche announced plans for a new clinical trial of tominersen. Then, the genetic medicines company Wave Life Sciences shared early data showing that its ... Read more

Focusing in on fibrils; scientists give us a glimpse of huntingtin protein clumps

Published date: 8 September, 2022

A group of scientists from the EPFL in Lausanne, Switzerland have published a paper in the Journal of the American Chemical Society, describing clumps made up of a fragment of the huntingtin protein. A word that’s commonly used to describe these is “aggregates.” Using very powerful microscopes, the team was able to zoom in and ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 4

Published date: 2 September, 2022

DNA repair and CAG repeat instability The effect of HTT lowering on CAG repeat expansions Welcome to last day of the @hdfcures conference! We’ll only be sharing a few talks from today’s sessions, which focus on DNA repair. The first is from HDBuzz’s very own Jeff Carroll! Jeff will be sharing his work on HTT ... Read more

Hereditary Disease Foundation (HDF) conference 2022 – Day 3

Published date: 1 September, 2022

Pre-clinical work moving toward trials New tools to lower HTT showing promise in animal models Welcome back! The first talk we will be tweeting about today is from Anastasia Khvorova, who will be telling us about her teams work on lowering of Huntingtin using technology called RNAi. One of the problems in studying drug delivery ... Read more